
System V

APPENDIX C

UNIX™ System V Init and Getty

UNIX™ System V Init and Getty

4. Introduction

In the UNIX* system environment, the initial process spawning is controlled and overseen by the
first process forked by the UNIX operating system as it comes up at boot time. This process is
known as init. One of the major jobs of init is to fork processes which will become the gerty-login-

sh sequence. This sequence of processes allows users to /Jogin and takes care of setting up the initial
conditions on the outgoing terminal lines so that the speed and the other terminal related states are
correct. Init and these other processes also keep an accounting file /ete/wtmp that is available to
processes on the system. With these files it is possible to determine the state of each process that

init has spawned, and if it is a terminal line, who the current user is. One program in particular,

who(1), provides a means of examining these files.

This document describes the capabilities of each program used in this new implementation, the
databases involved, and how to create and maintain these databases. In addition, the debugging
features designed into both init and getty are described in the event remedial action is required or

modifications are attempted.

2. Init

Init is driven by a database, its previous internal level, its current internal level, and events which

cause it to wake up.

2.1 The Database: /etc/inittab

Init’s database, kept in the file /ete/inittab, consists of any number of separate entries, each with the
form:

id:level:type:process

id The id is a one to four letter identifier which is used by init internally to label entries in

its process table. It is also placed in the dynamic record file, /etc/utmp, and the history
file, /etce/wtmp. The id should be unique.

level The /evel specifies at which levels init should be concerned with this entry. Level is a
string of characters consisting of [0-6a-c]. Anytime that init’s internal level matches a

level specified by /evel, this entry is active. If init’s internal level does not match any of
the levels specified, then init makes certain that the process is not running. If the level
field is empty it is equivalent to the string "0123456".

type The type specifies some further condition required for or by the execution of an entry.

off The entry is not to run even if the levels match.

once The entry is to be run only if init is entering a level. This means if init
has been awakened by powerfail or because a child died this entry will not

be activated. Only when a user signal requests a change of init’s internal
state to a state which is different from its current state, and this new state
is one in which this entry should be active, will this entry be activated.

* UNIX is a Trademark of Bell Telephone Laboratories, Incorporated.

process

wait Wait has all the characteristics of once, plus it causes init to wait until the

process spawned dies before reading anymore entries from its database.

This allows for initialization actions to be performed and completed before
allowing other processes which might be affected to start running. It is
common in the OSS environment for shared memory segments to be

initialized this way and semaphores to be conditioned.

respawn Respawn requests that this entry continue to run as long as init is running

in a level which is in this entry’s Jevel field. Most processes spawned by
init fall into this category. All getty processes are marked as respawn.
Whenever init detects the death of a process that was marked respawn, it
spawns a new process to take its place.

boot Boot entries have the execution behavior of once entries. They are started

only when init is switching to a numeric run state for the first time. Most
commonly boot entries have an empty /evel string, meaning that no matter
which level init switches to the first time, the boot entry will be run.
Should there be a more specific /evel string, for example "01", then the
boot entry would only be run if init switched to either the 0 or | run state

as its first numeric level.

bootwait Bootwait entries have the execution behavior of wait entries and they, like
boot entries, are only run as init switches to a numeric level for the first

time.

wer Power entries act like once entries and are activated if init receives a
is . .

SIGPWR signal (19) and is in a state which matches the active states for
the entry.

powerwait Powerwait entries act like wait entries and are activated if init receives a
SIGPWR signal and is in a state which matches the active states for the

entry.

initdefault Jnitdefault is a non-standard entry in that it does not specify some process
to be spawned. Instead it only specifies which level init is to go to initially

when it is coming up at boot time. This allows the system to be rebooted
without an operator having to make entries at the system console if so
desired. If there is no initdefault entry, then init will ask at the system
console, /dev/syscon, for the initial run state. In addition to specifying the
numbered states, the single-user state [s] may also be specified.

The process field is the action that init will ask a sh to perform whenever the entry is
activated. The string in the process field is given a prefix of "exec " so that each entry
will only generate one process initially. mit then forks and execs

sh -c “exec process"

This means that the process string can take full advantage of all sh syntax. The only

peculiarities arise from the string “exec ", which was prefixed to the string, and because
initially there is no standard input, output, or error output. The addition of "exec " to
the string means that if the user wants to have a single entry generate more than one

process, for example making a list of the people on the system at the time of a powerfail

and mailing it to root by the command "who | mail root", it would have to be put in as

pf::powerwait:sh -c "who | mail root"

to work. If it was put in simply as "who | mail root", it would be executed as "exec who |
mail root", and only the who process would be created before the sh disappeared. The

lack of standard input and output channels must be addressed by explicitly specifying

them. An example is the blog program that many OSS’s run as a bootwait entry as the

system comes up. Since it requires the operator to supply input, it appears as

bl::bootwait:/etc/blog </dev/syscon >/dev/syscon 2> &1

in /ete/inittab.

2.2 Levels

A level is one of seven numeric levels, denoted 0, 1, 2, 3, 4, 5, or 6, three temporary levels, denoted

a, b, or c, or the single-user level, s. Normally init runs in a numeric level. Precisely how a

particular level is used depends entirely on the database and the system administrator. The
temporary levels allow certain entries to be started on demand without affecting any processes that

were started at a particular level. The temporary levels immediately revert to the previous numeric

level once all entries in the database have been scanned to see if they should be started at the

temporary level. When an entry is started by a switch to a temporary level, it becomes independent

of future level changes by init, except a change to the single-user level. The only way to kill a

process that was started as a respawnable demand process, without going to the single-user level, is
to modify the database, declaring the entry to be off.

The single-user level is the one level independent of the database. For this reason it is not a level in
the normal sense. In the single-user level init spawns off a su process on the system console, and

that is the only process that it maintains while at the single-user level. The single-user level can be
entered at two different places in init. If it is entered at boot time it allows the operator to look

over the file systems without having init attempt to do any file 1/O, which might cause further
problems. /nit will not attempt to recreate /etc/utmp or access /etc/wtmp until after it has left this
initial single-user level. If the single-user level is entered at any other time, init does do the

bookkeepping in the record files.

The system administrator requests init to change levels by running a secondary copy of init itself.
/etc/init is linked to /bin/telinit, and it is usually through the felinit name that this is accomplished.
Init can only be run by root or a privileged group. Whenever init starts running and finds that its

process id is not 1, it assumes that it is a user initiated copy, which is supposed to send a signal to
the real init. The usage is:

telinit [0123456sSqQabcl

and the single character argument specifies the signal to be sent to init. If the request is to switch

to the single-user level, ‘S’ or ‘s’, then init also relinks /dev/syscon to the terminal originating the

request so that it becomes the virtual system console, thus insuring that future messages from init

will be directed to the terminal where the operator is located. When it does this relinking it also
sends a message to /dev/systty, saying that the console is being relinked to some other terminal so

that there is a record of the fact at the physical system console.

2.3 Waking Events

There are four events which will wake init: boot, a powerfail, death of a child process, or a user
signal.

boot Init operates in the boot state until it has entered a numeric state for the first time.

It is not possible for init to reenter the boot state a second time. Commands labeled
boot and bootwait are executed when changing to a numeric state for the first time,

if the levels match.

powerfail Any time power fails, the operating system sends a SIGPWR signal to all processes.
Init will execute commands with types of power and powerfail.

child death Any time a child process of init dies, init receives a SIGCLD signal (18). The dead
child process may be one of two types, a direct decendent of init, or a process whose

own parent process died before it did. The parent of a process automatically

becomes init, if its real parent should die before it does. Jnit determines

immediately if the defunct process was one of its own children or an orphan. If it
was one of its own, it performs the necessary bookkeepping on its internal process

table to note that the process died. If init was busy at the time it received the

SIGCLD signal, it then returns to complete whatever action it was performing. If

init was asleep, it then scans its database to determine if any other actions should be

taken, such as respawning the process.

user signal Init catches all signals that it is possible for a process to catch. Most signals have

specific meaning to init, usually requesting it to change its current state in some

way. There is one signal, the ‘Q’ signal, which is used just to waken init and cause

it to scan its database. This is often issued after a change has been made to the

database so that init will put the new change into effect immediately. If this was

not done, the change would not become effective until init had wakened for some

other reason. Other than during the initialization phase, it is solely with signals

that the system administrator controls the internal level at which init is running.

2.4 Normal Operational Behavior

Init scans /etc/inittab once or twice for each event which wakes it up. If it is in the boot or

powerfail state, it scans the table once, looking for entries of these types, and then switches itself

back to a normal state and scans again.

Its first action in the normal state is to scan /etc/inittab and remove all processes which are

currently active and should not be at the current level. Jnit employs one of two methods when

killing its child processes depending on whether it is changing levels or not. If init is not changing

levels, it forks a child process for each child that needs to be killed, and has that child process send

the signals to the process targeted for extinction. Killing a process involves sending it two signals.

First a SIGTERM signal (15), is sent so that it can clean up after itself and die gracefully. After

waiting the amount of time defined as TWARN (the default value is 20 seconds), a SIGKILL signal

(9), is sent, which guarantees that the child will die, if it hasn’t done so already. Forking a child to

do the killing has the advantage that the main init process need not wait for all the processes it is

killing to die before beginning the spawning of new processes. The disadvantage is that if many

processes were being killed this way, there would be a very real chance of the operating system

process table filling up, which causes the fork system call to fail. This in turn would upset init at

the very least and cause it to have to wait anyway. For this reason, when init is changing levels, it

assumes that it may have many processes to terminate and so it sends the signals itself, waits for the

required 20 seconds, and sends the final termination signals, before continuing. Once the old

processes have been removed, init makes an entry in its accounting files if it is changing levels. At

this point it either enters the single-user level or rescans its database looking for processes that need

to be spawned at the current level and in the current state. In the normal state of operation init is

looking for entries whose types are off, once, wail, or respawn.

With the completion of the scan of the database in the normal state, init is ready to wait for another

event. To ensure that a user who just logged off has had his or her files updated to the disk and to

insure that the bookkeepping is also updated to the disk, init performs a sync system call and then

pauses until it is awakened again for some new reason.

If init finds that it is being requested to switch to the single-user level when it wakens from the

pause, it saves all the ioct/ information about the system console in the file /etchoctl.syscon before

proceeding to remove all its other children. It does this so that if the system is being taken down,

the new init process will know how to set up the system console to talk to it. It is a convenient

feature to not have to change the baud rate and terminal specifications if you are rebooting a system

remotely. Because init preserves the ioctl state of the system console across system reboots,

messages coming out during reboots are legible to the operator, no matter where the system console

happens to be linked.

All written messages from init are sent to Mev/syscon. In reality, init itself does not send the
message, but forks a child to send the message. This is because init must never open a terminal line
or it will be assigned a controlling terminal. Since init has no controlling terminal, it can spawn
getty processes which initially have no controlling terminal. When such a getty opens its assigned
terminal, the terminal becomes the controlling terminal for it and its children. In the one instance
init needs input from the system administrator during the initialization phase. In this case, the child

process which is asking for the run level opens Aev/systty, which is always the physical system

console, before opening Mev/syscon, the virtual system console. This causes Mev/systty to be the
child’s controlling terminal. Thus, should the computer be coming up, Mev/syscon not be linked to
Mdevisystty, and Adev/syscon be down (perhaps because the datalink went down during the reboot), it
is possible for a person at Mdev/systty to regain control by typing a character. This causes
a SIGINT signal (2) to be sent to the child process, which will relink /dev/systty to /dev/syscon and
ask again for a run level, this time at the physical system console.

2.5 Setting Tunable Variables

Init has several tunable timing constants that can be adjusted when it is compiled.

SLEEPTIME /nit guarantees that it will awaken occasionally even if the system is quite inactive.

It does this by setting an alarm timer before going to sleep. The length of that

timer is defined by SLEEPTIME, and is initially five minutes. Since init does a

sync system call each time it wakes, this guarantees that there will be a sync at
least once every SLEEPTIME seconds.

TWARN TWARN is the number of seconds between the SIGTERM signal and the SIGKILL

signal, when init is removing processes. It should be set long enough so that all

processes who want to, can die gracefully on receipt of the SIGTERM signal. It is
initially 20 seconds.

NPROC This is the size of the internal process table init uses to keep track of its child

processes. It currently defaults to 100, though it can be passed in during
compilation with the -D option. I recommend you set it to the size of the system’s
process table.

WARNFREQUENCY To prevent init from flooding the system console with error messages when it

own internal process table is full, init only generates an error message once each
WARNFREQUENCY times that it is unable to find a slot. Proper sizing of the

internal process table should prevent this condition from ever occurring.

Init cannot directly tell if there is something wrong when it tries to fork and exec a command. It
assumes that there is something wrong if it has to respawn a particular entry too often. There are

three related defines controlling this feature, SPAWN_LIMIT, SPAWN_INTERVAL, and INHIBIT.

SPAWN_LIMIT SPAWN _LIMIT is the number of times a process may respawn in a certain interval

of time before further respawns are inhibited.

SPAWN_INTERVAL SPAWN _INTERVAL is the interval of time in seconds that SPAWN_LIMIT

number of respawns must occur to cause inhibition of an entry. If an entry should
respawn too often, a message is generated on the system console indicating which
line in /etc/inittab is at fault.

INHIBIT INHIBIT is the number of seconds of inhibition that will be applied to a process
which has respawned too often.

SPAWN_LIMIT and SPAWN_INTERVAL should be set so that it is possible for init to respawn a

process fast enough to cause inhibition, but not so low that it is possible to have a legal death of a
process happen so rapidly that it is inhibited. The current limits are ten respawns in two minutes.

The real problem is that when something like getty disappears, init becomes active trying to respawn

many processes and never gets to respawn a single process often enough to set off the alarm. The

INHIBIT limit is five minutes. Once an entry is inhibited, it is possible to restart it sooner than

INHIBIT seconds later by sending init the ‘Q’ signal. The normal problem is a typo in /etc/inittab,
and the normal procedure is to correct the typo and then do a "“telinit Q" to cause init to attempt the
spawning entry again.

2.6 Debugging Features

Init has some debugging features built in. There are three conditional debug flags, which allow
various flavors of debugging to be enabled.

UDEBUG This flag causes init to be compiled in a form that can be run as a normal user process

instead of as process-1. This allows a person to use sdb on it in a normal fashion and to

not disturb the rest of the system while debugging or modifications are made and tested.
There are differences in this user version of init. It assumes that utmp, wtmp, inittab,

ioctl.syscon, and debug are all in the local directory instead of /etc. It also writes to

/dev/sysconx and /dev/systtyx, instead of /dev/syscon and /dev/systty. It docs not
process all signals in the same fashion that the real init does. Signals SIGINT, SIGQUIT,

SIGIOT, and SIGTERM, which correspond to the signals to change to levels 2, 3, 4, and

ignore are left in their default modes, so that it is possible to terminate the user "init"
from a terminal. Signals SIGUSR1 and SIGUSR2, which are normally ignored by the

real init are set to cause an abort for capturing cores of the debug init. The UDEBUG

flag automatically sets the DEBUG flag, meaning that the first level of debug will be

generated by the init and written into the file debug in the current directory.

DEBUG This flag causes a version of init to be produced that can be run as the real init, but

which generates diagnostic messages about process removal, level changes, and
accounting and writes them in the file /etc/debug.

DEBUG1 DEBUG! causes the diagnostic output generated by DEBUG! to be increased

substantially. Specifically it produces messages about each process being spawned from

inittab.

3. Getty

Getty is responsible for making appropriate setting of terminal characteristics and baud rate so that
a user can communicate with the UNIX system. The most important of those features is the choice
of a baud rate so that input and output make sense. In the old version of getty, there was a

hardwired table in getty which controlled the search for the correct speed. The starting point in the
search is specified by the arguments passed to getty. If there was some reason to change the baud
rate search, getty had to be modified itself, and recompiled. In the new getty, the search is

controlled by an ascii file, /etc/gettydefs, and changing or augmenting the search behavior only

requires that the file be edited.

3.1 Usage

Getty is normally started from /ete/inittab by init. Getty takes from one to six arguments:

getty [-h] [-t time] line [speed_label] [term_typel [line_disc]

= 5 This switch tells getty that it should not drop the Data Terminal Ready signal

before resetting the line. This switch currently only works in the CB-UNIX system

environment. Normally getty ensures that DTR goes down so that connections to

the Develcon dataswitch will be disconnected everytime. The EIA protocol requires
that a dataset see DTR drop and be reasserted before answering another call. It is

possible for getty to come back on a line before all the processes spun off by the
previous user have died and closed their connections to the line. In this case, DTR
would not drop if gerty didn’t insure it. This switch is required for programs like

ct, which initiate a call from the computer to a user (instead of the user calling the
computer), putting a getty on the resulting connected line. Without the -h switch,

the getty would immediately disconnect the user again.

sal This switch specifies that the getty should die after the specified number of seconds
if nothing is typed. This prevents datasets from being tied up if someone isn’t
actually logging in after they’ve gotten connected.

line Line is the name of the terminal line, which getty is to open and set up. It is

minus /dev/ since getty does a chdir to the /dev directory and expects to find it in
that directory.

speed_label The speed_label is usually something like "1200" or "9600", which appears to
directly specify a baud rate, but in reality can be anything since it really is a label

of an entry in /etc/gettydefs for which getty looks. It specifies the entry getty will

start with when trying to find an appropriate speed to for the terminal. It defaults
to "300" if there is none given.

term_type The term_type specifies which terminal discipline is to be used. If this is specified,

the virtual terminal protocol becomes immediately effective on the line. Typical

types might be "vtl00", "hp45", or "tek". Whatever type is specified, it must be a
terminal handler that has been compiled into the operating system to be effective.
This argument is given for lines that are hardwired to the computer.

line_disc The /ine discipline is the last thing that can be specified. The most common is

“half™ or “half_duplex", when there is a half duplex terminal coming into the
computer. This causes the appropriate line discipline to be associated with the

line.

3.2 The Database: /etc/gettydefs

Whenever getty is invoked it references its database to determine certain information about how to

set up the line. Each entry in the database has a fixed format.

label# initial flags # final flags # login msg #nextlabel

Getty matches its speed label argument against the "label" field. It stops searching when it finds an
entry with a label that matches. The entry specifies how the terminal is supposed to be setup during

the initial phase, the phase when getty prints out the “login msg" and reads in the user’s login name,
and the final phase, when getty exec’s the /ogin program to continue to the Jogin process. The baud
rate is specified as an ioct/ flag in both the initial and final flags fields.

The flags themselves are strings matching the define variables found in /usr/include/termio.h. It

should be noted that these flags may be partially or totally overridden if there is a terminal type

specified. When a terminal type is enabled, it resets various flags to suitable conditions
automatically.

During the initial phase, getty always puts the terminal into a non-echoing raw mode. This allows it

to take each character as it comes in and infer certain things about the terminal. For instance, if it

sees upper case alphabetic characters, but no lower case, it then assumes that the terminal is upper

case only and sets it up in the final configuration so that the upper to lower case conversions are

made. Also if the speed is wrong it will get a <NULL> character (or <ESC> <NULL>

character if a terminal type is set) if there is a framing or parity error. This means that the speed

is wrong and another speed should be tried.

The typical "initial flags" would only include the speed, for example "B1200 CS7 PARENB HUPCL".

"CS7 PARENB" sets the line for 7 bits, even parity characters. "HUPCL sets the line to hangup on
close. Typical final flags would be "B1200 SANE IXANY TAB3". "SANE" is not a real flag found in

the header file, but a collection of ioct/ flags used for normal termina] behavior. "IXANY" permits

the use of any character to restart output. "TAB3" says to expand tabs on output.

The “login msg” field is the message that getty will print before waiting for the user to enter his or
her login name. It may contain anything desired and geffy understands normal special character

conventions so that "\n" means <If> as does "\012". On systems that are not using the terminal

handlers and where lines are hardwired, people have been known to make up special entries for
different terminal types, for example:

vt100-2400# B2400 # B2400 SANE TAB3 79530GIN: #vt100-1200

33[H 33[2JAMACCS System B

where the "login msg" contains the special vt100 characters required to clear the screen. Notice also

that the entry can take more than one line. Entries are delimited by a blank line. Lines that begin

with a pound sign (#) are ignored so that comments may be added to the file.

The "next_label" field tells gerty which entry to try next if it gets an indication that the speed is

wrong. In the above example it would look for an entry with the name "vt100-1200" if this one
wasn’t at the proper speed. Normally the entries don’t contain terminal specific information, and

the various speed choices are linked together in a closed circle of some sort. For example it is

common to have 9600 -> 4800 -> 2400 -> 1200 -> 300 -> 9600. In this way, no matter where
you enter the circle, sooner or later you should be able to get to the speed that is correct for your

terminal.

To enable the system administrator to check the database for readability by getty, there is a
checking mode in which getty can be run.

getty -c gettydefs like file

When getty is run in this mode, it scans the entire input file specified and deciphers each entry,
printing out the resulting modes that it will set. If it finds a line that it cannot read, it prints an
appropriate message, which allows the administrator to correct the entry. By this mechanism it is

possible to avoid installing a misformatted gettydefs file and have it tie up the system.

Also as a safety measure, should getty be unable to find /etc/gettydefs, it does have a one fallback

entry built in. Should gettydefs disappear for some reason, a user could still log in at 300 baud,
since this is the default setting in the built-in entry.

3.3 Operational Behavior

As has been shown earlier, getty sets up a line as specified by an entry from /etc/gettydefs and from

any additional arguments, outputs the "login msg" field, and then tries to read the user’s login name
from the line. During the input of the login name, getty checks for speed mismatches that the

operating system will report as a <NULL> character. If such a mismatch occurs, getty tries the
next speed specified by the current entry, and repeats the whole sequence. Also while reading in the

login name, getty makes a guess whether the terminal is upper case only. If it sees some upper case
characters, but no lower case characters, it assumes that the terminal is upper case only and sets the

ioct! state of the line to translate upper case letters to lower case on input, and lower to upper case

on output.

An addition has been made to getty and login, which allows for environmental variables to be set up

at the time a user enters his or her login name. This allows users to control the behavior of their

.profile at the time they specify their login names. Getty executes the login program by passing all

the separate words given it in response to the login message as arguments to Jogin. If for example,

the user responded with "jls f", then getty would execute “login jls f" as its final action. See the

login section to see how this modifies the commands behavior.

4. login

Unlike init and getty, login did not require a great deal of modification. The only required change

was that it should write to /etc/utmp and /etc/wtmp in the new format. This change was minor.
At the time this change was made, a change visible to the user was also made: the ability to add to

the environment. This change was added as a convenience. It allows the user to modify the

behavior of his or her .profile by having environmental variables set which the .profile script knows

about.

The basic change was that any additional words provided in response to the basic "login:" query are
placed in the environment of the sh executed by /ogin as its last act in the following way. If the

word does not contain an ‘=’, a shell variable of the type "Ln=word" is created. "n" is a number

starting at 0 and for each new environment variable it is incremented by one. If the word does
contain an ‘=’, then the whole string is passed in the environment unchanged. For example,

"TERM=2621" would be placed in the environment unchanged and the shell variable $TERM
would be defined as "2621".

To preserve security, there are a couple of exceptions. It is not possible to change the shell variables

$PATH or $SHELL by this mechanism. That means that a restricted shell will remain restricted
and that the user cannot gain access to commands that might allow him to avoid the usual

restrictions of rsh.

5. who

Who(1) is the program that reads the history files maintained by init, getty, and /ogin. Since the

format of these files was changed substantially, it was necessary to change who. In the process
some additional features where added to who so that it would convey more useful information to

users. The standard usage for who is:

who [-uTIpdbrtas] [[am il or [utmp_like_filel]

u This returns a listing of useful information for all the users. This information includes login

time, activity, pid and comment from inittab file.

T Report the writability state of the terminal for that entry.

] Report all entries that are living geffy processes.

Pp Report all entries for living children of init excluding getty and decendents of getty.

d Report all the entries for processes that have died.

b —_- Report the boot time entries that init has made. In /etc/utmp there is only one such entry.

r Report the run level entries that init has made. In /etc/utmp there is only one such entry, the

current run level entry. The current state, the number of times in that state, and the previous

state are also reported.

t Report the change of date entries that have been made by the date(1) command when the
clock was reset. These are required in the history file, /etc/wtmp, if accounting is to be done.

a Report all the entries.

5 Report information for all users in short form, this is the default.

If no file is specified, then /etc/utmp is assumed. The who am i sequence returns the entry for the

user typing the command.

There are various output formats for the different kinds of entry. In particular, entries for users and

getty processes list the amount of time since output to the terminal occurred. This is often of

interest since it shows other users whether someone is actually working at a terminal or not. The

comment field at the end of the entry from /etc/inittab is also included, which can conveniently be

set up to be the location of the terminal. Dead entries report the exit status for the process that
died. This can be of use, since it shows whether the process terminated abnormally or not.

6. Other Affected Programs

All programs accessing the accounting files were affected by the new utmp structure. In particular,

date(1) makes two entries indicating the old time and new time, whenever it changes the system
clock. Also affected are the commands in /usr/lib/acct, which produces reports based on the

information in /ete/wtmp.

ZAG

7. utmp format

A major change in going to the new init was that it uses a different format in writing out its records
in /etc/utmp and /etc/wtmp. The new format is:

[= <sys/types.h> must be included. nf

#define UTMP FILE "/etc/utmp"
#define WTMP_FILE ‘'"/etc/wtmp"
#define ut_name ut_user

struct utmp

{
char ut_user[8] ; /* User login name */
char ut_id[4] ; /* /etc/lines id(usually line #) */

_char ut_line[12] ; /* device name (console, Inxx) */
short ut_pid ; /* process id */
short ut_type ; /* type of entry */
struct exit_status

{
short e termination ; /* Process termination status */

short e_exit ; /* Process exit status */

ut_exit ; /* The exit status of a process
* marked as DEAD PROCESS.

tf
time_t ut_time ; /* time entry was made */

i

i Definitions for ut_type “i

#define EMPTY 0
#define RUN_LVL 1
#define BOOT. TIME 2
#define OLD TIME 3

#define NEW_TIME 4
#define INIT_PROCESS 5 /* Process spawned by "init" */
#define LOGIN_PROCESS 6 /* A “getty" process waiting for login */
#define USER_PROCESS7 /* A user process */
#define DEAD_PROCESS 8
#define ACCOUNTING 9

#define UTMAXTYPE ACCOUNTING /* Largest legal value of ut_type */

he Special strings or formats used in the “ut_line" field when */

Hs accounting for something other than a process. */
if No string for the ut_line field can be more than 11 chars + iV
/* a NULL in length. if

#define RUNLVL_MSG "“run-level %c"

#define BOOT_MSG "system boot"
#define OTIME MSG _ "old time”
#define NTIME MSG “new time"

The ut_type field completely identifies the type of entry, the ut_id field only contains the "id" as
found in the "id" field of /etc/inittab. The ut_line field was expanded and freed so that it can

artis

contain things like console or othér things that are not of the form /dev/Inxx. Finally ut_exit
contains the exit status of processes that init has spawned and that have subsequently died.

